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Abstract

Approximants to functionsf (s) that are allowed to possess infinite limits on their interval of
definition, are constructed.
To this end a compactification ofRn is developed which is based on the projection ofRn on a

bowl-shaped subset of a parabolic surface. This compactification induces a bijection and a metric
with several desirable properties that make it a useful tool for rational approximation of unbounded
functions.

Roughly speaking this compactification enables us to show that unbounded functions can be ap-
proximated by rational functions on a closed interval; thus we also obtain an extension toWeierstrass’
celebrated theorem. An extension to a Fourier-type theorem is also obtained. Roughly speaking, our
result states that unbounded periodic functions can be approximated by quotients of certain trigono-
metric sums. The characteristics of the main results are the following. The approximations do not
require the original approximated function to possess a restricted rate of growth. Neither do they
require that the approximated function possess any amount of smoothness. Moreover, the numerator
and denominator, in an approximating quotient are guaranteed not to vanish simultaneously. Further-
more, some of the proposed approximations are guaranteed to be bounded at every point at which
the original approximated function is bounded. Beside the tool of compactification we also employ
Bernstein polynomials and Cesaro means of “trigonometric sums”.
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1. Introduction

The purpose of this study is to offer approximations to unbounded functions and to un-
bounded vector functions. Some of the celebrated results in approximation theory include
Weierstrass’ and Fourier-type theorems. Weierstrass’ theorem states that every function
f (s) ∈ C[a, b] can be uniformly approximated by polynomials. A Fourier-type theorem
(roughly speaking) states that a continuous periodic function on(−∞,∞) can be approx-
imated by a quotient of “trigonometric sums”. The features of our approximations are as
follows.
The approximations do not impose restrictions on the order of growth of the unbounded

approximated function at its singular points. Neither do they require analyticity or high
order of smoothness from the approximated functionsf (s). Moreover, the numerator and
denominator, in anapproximatingquotient areguaranteednot to vanish simultaneously. Fur-
thermore, the proposed approximations are guaranteed to be bounded at every point where
the original approximated function is bounded. Usually, the conventional approximations of
unbounded functions imposes restrictions on the order of growth of the approximated func-
tions at their singular points. See e.g. [1,3–5 ,8,9,11,12]. Usually, an approximated function
needs to possess a certain amount of smoothness. This is the case in the theory of Pade
approximants. Functions must be meromorphic or “somehow related” to a meromorphic
function. This is also the case in the theory of Jacobi and other orthogonal polynomials. For
example, in the case of Jacobi polynomials the given approximated functionf (s) on[−1,1]
cannot grow faster, ats = ±1, than(1− s)�(1+ s)� for some�,� real. It is noteworthy that
there is no guarantee that the numerator and denominator, in a Pade approximant will not
vanish simultaneously. Neither is there guarantee that a Pade approximant will be bounded
at all points where the approximated function is bounded.
The following definition describes the nature of functions that are called “continuouslike

accepting infinitudes”. These are the generic functions to be approximated in the current
study.

Definition 1. The functionf is called continuouslike accepting infinitudes on[a, b], in
short,f (s) ∈ CAI [a, b], if for every ŝ ∈ [a, b] one of the two conditions are met;
(a) f is continuous at̂s ∈ [a, b] or
(b) f is discontinuous at̂s ∈ [a, b], but there exists lims→ŝ f (s), and then sucĥs satisfies

that

lim
s→ŝ

f (s) = ∞ or lim
s→ŝ

f (s) = −∞. (1.1)

If ŝ = a (respectively,̂s = b) we assume that

f (a+) = ∞ or f (a+) = −∞, respectively,

f (b−) = ∞ or f (b−) = −∞. (1.2)

Notice thatf continuous at̂s = a (respectively,f continuous at̂s = b) means as usual,
there existsf (a+) := lims→a+ f (s) andf (a) = f (a+) (respectively, there exists
f (b−) := lims→b− f (s) andf (b) = f (b−)).
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The vector functionV (s) = 〈v1(s), v2(s), . . . , vm(s)〉, is said to be continuouslike
accepting infinitudes on[a, b], in short

V (s) ∈ CAI [a, b], if each componentvk(s) ∈ CAI [a, b], k = 1,2, . . . , m.

It is evident from the definition that we impose no restriction on the rate of growth of a
functionf (s) ∈ CAI [a, b], at its singular points.
The main tool for obtaining the extensions to Weierstrass’ and Fourier’s theorem is the

parabolic compactification, to be developed in the sequel.
We denote a sequence of generic approximants byA(f, n, s) or by Â(f, n, s), n =

1,2, 3, . . . .
The order of events in this work is as follows. In Section 1 we construct certain mappings

from a certain set, to be called the “ultra extendedRn”, to a parabolic surfacexn+1 =
x21 + x22 + · · · + x2n. Two bijections from the “ultra extendedRn” are constructed. One of
the bijections maps the “ultra extendedRn” to a bowl-shaped set on the parabolic surface.
In Section 3, we construct a metric that is induced by the compactification in Section 2. In
Section 4 we formulate and prove a theorem about generic approximations to functions that
are continuouslike accepting infinitudes on an interval[a, b]. Extensions to Weierstrass’
and Fourier’s theorem are also obtained. In Section 5, we discuss approximantsA(f, n, s)

that are “Ntotally compatible” with a functionf (s) ∈ CAI [a, b]. These approximants
A(f, n, s), n = N , N + 1,... are such that|A(f, n, s)| �= ∞ whenever|f (s)| �= ∞.
They could be useful in theoretical and practical considerations when delegating to a digital
computer the task of numerical approximations of unbounded functions. We also consider
the approximation of periodic functionsf (s) on (−∞,∞) that belong toCAI [−�,�] and
f (s + 2�) = f (s). Ultimately, we consider vector functionsV (s) = 〈v1(s), . . . , vm(s)〉 ∈
CAI [a, b].
The development of the compactification here has been influenced by the work[6].

In [6] the complex plane is supplemented by a continuum of ideal points that account
for “all directions at infinity”. The complex plane is then mapped onto a spherical bowl.
Its boundary is the image of the continuum of ideal points supplementing the complex
plane. Topologically the compactification employed in this work is equivalent to the com-
pactification developed in[6]. Unfortunately, the compactification in[6], possess radicals
that prevent it of being a tool for rational approximations.

2. Bijections induced by the parabolic compactification

Consider the set of points inRn given by

Rn = {z|z = (�1, . . . , �n),−∞ < �j < ∞, j = 1,2, . . . n}, (2.1)

together with the ideal setID defined by

ID := {∞u|u ∈ Rn and 1= ||u||2 = u21 + u22 + · · · + u2n}. (2.2)

The setRn ∪ ID will be called the ultra extendedRn.
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Consider a fixed pointP ∈ Rn+1, P = (0, 0, . . . ,0, �), with � > 0 a fixed real number.
Henceforth we identify a pointz = (�1, . . . , �n) with a point

Q ∈ Rn+1whereQ = (�1, . . . , �n, 0).ThecoordinatesofapointZ = (x1, . . . , xn, xn+1)

on the straight linePQ is given for some real numbert by the formula

−→
PZ = t

−→
PQ. (2.3)

The vector relation (2.3) is equivalent to

x1 = t�1, . . . , xn = t�n, xn+1 − � = −t�. (2.4)

The straight linePQ intersects the parabolic surface

xn+1 = x21 + · · · + x2n (2.5)

at two points. One of the two points, sayZ, where the linePQ intercepts the parabolic
surface is “between”P andQ. Then 0� t�1 in the relation (2.3). IfZ “is not between”P
andQ thent in (2.3) is negative. In this manner two images of the ultra extendedRn are
generated on the parabolic surface. One of the images is a bounded parabolic bowl that is a
closed set. The other image, that is unbounded, shares a circle as a common boundary with
the parabolic bowl. This circle is the image of the ideal points augmenting the set ofRn

with all “directions at infinity”. We can thus determine two bijections between the points
Q ∈ Rn ∪ ID and certain subsets of the parabolic bowl as described above.
From (2.4) we obtain after squaring that

x21 = t2�21, . . . , x
2
n = t2�2n. (2.6)

After summing the squares we get

R2 = t2r2, R = |t |r, (2.7)

with

R2 = x21 + · · · + x2n, r2 = �21 + · · · + �2n. (2.8)

Combining (2.5) withxn+1 = �(1− t) we have

xn+1 = R2 = �(1− t) = t2r2, t = 1− R2

�
. (2.9)

Solving the quadratic equation�(1− t) = t2r2 for t we have

t = 1− R2

�
= 2

1+
√
1+ 4r2

�

if 1 − R2

�
�0, (2.10a)

t− = 1− R2

�
= −�

1+
√
1+ 4r2

�

2r2
if 1 − R2

�
�0. (2.10b)
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The formula (2.10a) enables us to write the coordinates ofZ, on the parabolic bowl, in
terms of the coordinates ofzas follows:

x1 = 2�1

1+
√
1+ 4r2

�

, . . . , xn = 2�n

1+
√
1+ 4r2

�

,

xn+1 = �(1− t) = �


√
1+ 4r2

� − 1√
1+ 4r2

� + 1

 . (2.11)

We also have viaR = |t | r in (2.7)

R2 = 22r2

[1+
√
1+ 4r2

� ]2
, R = 2r

1+
√
1+ 4r2

�

. (2.12)

From the relationt = 1− R2

� we can obtain the inverse relations

�1 = x1

t
= x1

1− R2

�

, . . . , �n = xn

t
= xn

1− R2

�

, (2.13)

together with

r2 = R2

t2
= R2(

1− R2

�

)2 , r = R∣∣∣(1− R2

�

)∣∣∣ . (2.14)

Notice that (2.11) holds only withZ on the parabolic bowl and of course 0� t�1.Thus
(2.11) together with (2.13) determine one of two possible bijections. On the other hand
(2.13) detached from (2.11) could serve a dual purpose. With 1− R2

� > 0 we obtainRn as

the image of the parabolic bowl. Witht− = 1− R2

� < 0 we obtainRn as the image of the
unbounded portion of the parabolic surface.
The relation (2.13), is central to our results about approximations via rational functions.

The reason being is that�1, . . . , �n are rational functions ofx1, . . . , xn.
So far we have established a bijection fromRn to a subset of the parabolic surface (2.5). It

is only natural now to take the limit in (2.11) asr → ∞ in order to determine the definition
of the correspondence between a pointz ∈ ID and a pointZ on the parabolic surface.
Consider, the relation

xk = 2�k

1+
√
1+ 4r2

�

= 2�k

1+
√

4r2
�

(
�
4r2

+ 1
) = 2�k

1+ 2r√
�

(
�
4r2

+ 1
) 1

2

=

 √
�

√
�

2r +
[

�
4r2

+ 1
] 1
2

(�k
r

)
, k = 1, . . . , n, (2.15)
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for r > 0. The coefficient of�k
r

in (2.15) tends to
√

� asr → ∞. Notice also thatt ∼√
�
r

→ 0 asr → ∞. It is now natural to match a point∞u ∈ ID with the pointZ on the
parabolic surface as follows:

x1 = √
�u1, . . . , xn = √

�un, xn+1 = �. (2.16)

We add now the following definition:

Definition 2. The parabolic bowl is the set of pointsZ = (x1, . . . , xn, xn+1) defined by

Parabolic bowl:= {Z | x21 + · · · + x2n��, 0�xn+1��}. (2.17)

Notice, that in the case thatn = 2, our surface is obtained from revolving a parabola
x3 = x21 about thex3-axis.We then obtain a bijection of the ultra extended complex plane to
a bowl-shaped set on the parabolic surface. Each point∞(cos�, sin �) ∈ ID, 0�� < 2�
is matched with a pointZ = (

√
� cos�,

√
� sin �, �) on a circle which is the boundary of

the parabolic bowl.
We are ready now to summarize the discussion above by the following theorem.

Theorem 3. Define the mapping

x1 = t�1, . . . , xn = t�n, xn+1 = �(1− t) (2.18)

with

t = 2

1+
√
1+ 4r2

�

, r2 = �21 + · · · + �2n, z = (�1, . . . , �n) ∈ Rn (2.19)

and

x1 = √
�u1, . . . , xn = √

�un, xn+1 = � (2.20)

for z = ∞u, ||u||2 = 1. Then, this mapping establishes a bijection fromRn ∪ ID to the
closed set of the parabolic bowl. The inverse of this bijection is given by

�1 = x1

1− R2

�

, . . . , �n = xn

1− R2

�

. (2.21)

Each�k, k = 1,2, . . . , n, is a rational function of the variablesx1, x2, . . . , xn.
We denote the bijection developed in formulas(2.18)–(2.21)byZ = G(z).
We also have forz ∈ Rn the mapping

x1 = −�
1+

√
1+ 4r2

�

2r2
�1, . . . , xn = −�

1+
√
1+ 4r2

�

2r2
�n,

xn+1 = �

1+ �
1+

√
1+ 4r2

�

2r2

 (2.22)
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and for z = ∞u, ||u||2 = 1we have

x1 = −√
�u1, . . . , xn = −√

�un, xn+1 = �. (2.23)

The relations(2.22), (2.23),together with the inverse relations given by(2.13)establish
a bijection fromRn ∪ ID to the subset of the parabolic surface given by{

Z |Z = (x1, . . . , xn, xn+1), R
2 = x21 + · · · + x2n, and 1− R2

�
�0

}
. (2.24)

3. The metric induced

In this section, we develop a metric on the setRn ∪ ID that is induced by the compacti-
fication ofRn.

Supplement the notations of Section 1 by the following:

ẑ = (�̂1, . . . , �̂n), Ẑ = (̂x1, . . . , x̂n, x̂n+1), r̂2 =
n∑

j=1

�̂2j ,

R̂2 = x̂21+, . . . ,+x̂2n, t̂ = 2

1+
√
1+ 4r̂2

�

, û = (û1,...,ûn).

We define a metric�(z, ẑ) onRn ∪ ID by the Euclidean distance||Z − Ẑ||. Namely,

�(z, ẑ) = ||Z − Ẑ|| = ||G(z) − G(ẑ)||. (3.1)

We proceed now to express the distance between two points inRn ∪ ID in terms of their
coordinates. By the definition of the Euclidean distance we have

||Z − Ẑ||2 =
n∑

j=1

(x̂j − xj )
2 + (x̂n+1 − xn+1)

2

=
n∑

j=1

x̂2j +
n∑

j=1

x2j −
n∑

j=1

2xj x̂j + (x̂n+1 − xn+1)
2. (3.2)

Substitute in (3.2),̂xn+1 = ∑n
j=1 x̂2j , xn+1 = ∑n

j=1 x2j . Then,

||Z − Ẑ||2 = x̂n+1 + xn+1 + (x̂n+1 − xn+1)
2 −

n∑
j=1

2xj x̂j . (3.3)

Now substitute in (3.3);̂xn+1 = �(1− t̂ ), xn+1 = �(1− t), x̂j = t̂ �̂j , xj = t�j , j =
1, . . . , n, and obtain

||Z − Ẑ||2 = �2[t̂ − t]2 + �[2− (t + t̂ )] − 2t̂ t
n∑

j=1

�j �̂j . (3.4)
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We utilize the Euclidean distance inRn, namely,

D2 =
n∑

j=1

(�̂j − �j )2 =
n∑

j=1

�̂2j +
n∑

j=1

�2j − 2
n∑

j=1

�j �̂j

= r̂2 + r2 − 2
n∑

j=1

�j �̂j (3.5)

and we substitute in (3.5)

− 2
n∑

j=1

�j �̂j = D2 − r̂2 − r2. (3.6)

Thus we obtain

||Z − Ẑ||2 = �2[t̂ − t]2 + �[2− (t + t̂ )] + t t̂[D2 − r̂2 − r2]
= �2[t̂ − t]2 + �[2− (t + t̂ )] + t t̂

[
D2 − �(1− t)

t2
− �(1− t̂ )

t̂2

]
,

by virtue ofr2 = �(1−t)

t2
andr̂2 = �(1−t̂ )

t̂2
.

We now rewrite the right-hand side of (3.4) as follows:

||Z − Ẑ||2 = t t̂

[
D2 − �(1− t)

t2
− �(1− t̂ )

t̂2
+ �2[t̂ − t]2

t t̂
+ �[2− (t + t̂ )]

t t̂

]
.

A short calculation reveals that,

||Z − Ẑ||2 = t t̂

[
D2 + �2[t̂ − t]2

t t̂
− �

(
1

t̂
− 1

t

)2
]

= t t̂

{
D2 − �

(
1

t̂
− 1

t

)2

[1− �t t̂]
}
. (3.7)

Finally, we have an expression of the metric in terms of the coordinates ofz andẑ,

�(z, ẑ)= ||G(ẑ) − G(z)|| =
√
t t̂D2 + �2[t̂ − t]2 − �(t − t̂ )2

t t̂

=
√√√√t t̂

{
D2 − �

(
1

t̂
− 1

t

)2

[1− �t t̂]
}
. (3.8)

This with t̂ = 2

1+
√
1+4r̂2

�

and t = 2

1+
√
1+4r2

�

.

If one of the pointsz or ẑ is in the ideal set ID, sayz = ∞u, ||u|| = 1, then we obtain
directly from (3.2)

�(∞u, ẑ) =
√√√√ n∑

j=1

(t̂ �̂j − √
�uj )2 + �2t̂2. (3.9)
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This, by virtue of the fact thatt ∼
√

�
r

→ 0 asr → ∞.

Moreover, withz = ∞u, ‖u‖ = 1 andẑ = ∞û, ‖û‖ = 1 we have

�(∞u,∞û) =
√√√√�

n∑
j=1

(ûj − uj )2. (3.10)

A lengthy but straightforward calculation yields the metric expressed explicitly in terms
of D2 and the radial distancesr2 andr̂2. Videlicet,

�2(z, ẑ)= ||Z − Ẑ||2 = 22

[1+
√
1+ 4r2

� ][1+
√
1+ 4r̂2

� ]

×

D2 − �
22

√1+ 4r2

�
−
√
1+ 4r̂2

�

2

×
1− 22�

[1+
√
1+ 4r2

� ][1+
√
1+ 4r̂2

� ]




= 22

[1+
√
1+ 4r2

� ][1+
√
1+ 4r̂2

� ]

×

D2 − 22(r2 − r̂2)2

�[
√
1+ 4r2

� +
√
1+ 4r̂2

� ]2

×
1− 22�

[1+
√
1+ 4r2

� ][1+
√
1+ 4r̂2

� ]


 . (3.11)

Since
√
1+ 4r2

� −
√
1+ 4r̂2

� = 22(r2−r̂2)

�[
√
1+4r2

� +
√
1+4r̂2

� ]
.

Let us calculate in the casen = 2 the parabolic distance between two points in the ideal
setID. A straightforward calculation reveals that

�(∞(cos�, sin �),∞(cos�, sin �))=√
2�[1− cos(� − �)]

= 2
√

�

∣∣∣∣sin (� − �)
2

∣∣∣∣ .
In particular, ifn = 1, the parabolic distance between +∞and−∞ is 2

√
�.

Although the parameter� adds a coordinate of freedom to our setting, we will take� = 1
in the remaining sections.
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4. General and rational approximations

In this section, we point out how to employ general type approximations in the service
of members of the familyCAI [a, b]. We also derive an extended Weierstrass theorem
and an extended Fourier-type theorem. We observe thatf (s) ∈ CAI [a, b] implies that

2f (s)

1+
√

1+4f 2(s)
∈ C[a, b].

Hence, any approximation sequence, that is available in the literature, that approximates
the continuous function 2f (s)

1+
√

1+4f 2(s)
∈ C[a, b] in the supremumnorm, is an approximation

tool for f (s) ∈ CAI [a, b]. The special nature of the parabolic compactification becomes
then crucial in obtaining rational approximations.
The following proposition employs quite general approximants.

Proposition 4. Considerf (s) ∈ CAI [a, b]. Define the sequencẽA := Ã(
2f (s)

1+
√

1+4f 2(s)
,

n, s) that is given by

Ã :=
A(

2f (s)

1+
√

1+4f 2(s)
, n, s)

1− A2(
2f (s)

1+
√

1+4f 2(s)
, n, s)

. (4.1)

Assume that uniformly on[a, b],

lim
n→∞ sup

∣∣∣∣∣A
(

2f (s)

1+√
1+ 4f 2(s)

, n, s

)
− 2f (s)

1+√
1+ 4f 2(s)

∣∣∣∣∣ = 0. (4.2)

Then,
(i) on every compact subset I of[a, b] that excludes pointŝs, wheref (ŝ) is unbounded
we have

lim
n→∞ sup

s∈I

∣∣∣∣∣f (s) − Ã

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)∣∣∣∣∣ = 0. (4.3)

(ii) The sequence
A

(
2f (s)

1+
√

1+4f 2(s)
,n,s

)
∣∣∣∣1−A2

(
2f (s)

1+
√

1+4f 2(s)
,n,s

)∣∣∣∣ converges uniformly on[a, b] to f (s) in the

parabolic metric.

Proof. A proof of (i) requires to show that a small neighborhood on the parabolic bowl
must be the image of a small neighborhood ofRn if the neighborhood inRn is confined
to a compact subset ofRn. This follows by scrutinizing the relation between�2(z, ẑ) and
D2 =‖ z − ẑ ‖2 in formulas (3.8), (3.11) and the related quantitiest and t̂ . To that end
notice that the functiont is a monotone decreasing function ofr2 since

�t
�(r2)

= −4(
1+ 4r2

�

)1/2[
1+

√
1+ 4r2

�

]2 < 0. (4.4)
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Therefore,t (0) = 1, t (∞) = 0 and 0� t�1. Moreover, if r2��2 < ∞, then 0<
	� t�1 with 	 = 2

1+
√

1+4�2/�
. Recall that

t = 2

1+
√
1+ 4r2

�

= 1− R2

�
, R2 = t2r2 =

(
1− R2

�

)2

r2,

r2 = R2

(1− R2

� )2
, xn+1 = R2 = �(1− t).

FromR2 = �(1− t) andt a decreasing function ofr2 we conclude thatr2��2 < ∞
implies

R2��(1− t (�2)) < �, 1− R2

�
� t (�2) > 0. (4.5)

From (3.8) we have

t t̂D2 = �2(z, ẑ)−�2[t̂ − t]2+ �(t − t̂ )2

t t̂
= �2(z, ẑ)+�(t − t̂ )2

[
(t t̂)−1−�

]
. (4.6)

We intend to find a bound on the factor�(t − t̂ )2 on the right-hand side of (4.6), in terms
of �2(z, ẑ).We have

�(t − t̂ )2 = �

[(
1− R2

�

)
−
(
1− R̂2

�

)]2
= �−1(R̂ − R)2(R̂ + R)2. (4.7)

From (3.2) we conclude that

�2(z, ẑ) = R2 + R̂2 − 2
n∑

j=1

xj x̂j + (R̂ − R)2

� R2 + R̂2 − 2RR̂ + (R̂2 − R2)2

= (R̂ − R)2
[
1+ (R̂ + R)2

]
�(R̂ − R)2. (4.8)

This is so by the Cauchy–Schwarz inequality, as∣∣∣∣∣∣
n∑

j=1

xj x̂j

∣∣∣∣∣∣ �
 n∑
j=1

x2j


1
2
 n∑
j=1

x̂2j


1
2

= RR̂. (4.9)

Hence,

| R − R̂ | ��(z, ẑ). (4.10)

Utilize in (4.6) the conclusions (4.7) and (4.10) and obtain∣∣t t̂∣∣D2�
[
1+ �−1(R̂ + R)2

(∣∣t t̂∣∣−1 + �
)]

�2(z, ẑ). (4.11)
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Finally we conclude from (4.11) the relation

D2 �
∣∣t t̂∣∣−1

[
1+ (R̂ + R)2

(∣∣�t t̂∣∣−1 + 1
)]

�2(z, ẑ)

�
∣∣∣∣∣
(
1− R2

�

)(
1− R̂2

�

)∣∣∣∣∣
−1

×
1+ (R̂ + R)2

∣∣∣∣∣�
(
1− R2

�

)(
1− R̂2

�

)∣∣∣∣∣
−1

+ 1

 �2(z, ẑ). (4.12a)

Recall the relation (4.5), wherer2��2 < ∞ andr̂2��2 < ∞, imply 1− R2

� � t (�2) > 0

and 1− R̂2

� � t (�2) > 0 and obtain

D2�
[
t (�2)

]−2
{
1+

[
2�t (�2)

]2(
�−1

[
t (�2)

]−2 + 1

)}
�2(z, ẑ). (4.12b)

Hence, if�(z, ẑ ) tends to zero so doesD2 for r2, r̂2��2 < ∞.

It is now possible to conclude the proof of (i) by pointing out the following relations. Put
in (4.12)� = 1 and put

z = f (s), Z = G(z) = 2f (s)

1+√
1+ 4f 2(s)

, (4.13a)

Ẑ = A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
, ẑ =

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
1− A2

(
2f (s)

1+
√

1+4f 2(s)
, n, s

) , (4.13b)

r = |f (s)| , R =
∣∣∣∣∣ 2f (s)

1+√
1+ 4f 2(s)

∣∣∣∣∣ , (4.13c)

R̂ =
∣∣∣∣∣A
(

2f (s)

1+√
1+ 4f 2(s)

, n, s

)∣∣∣∣∣ , r̂ =

∣∣∣∣∣∣∣∣
A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
1− A2

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
∣∣∣∣∣∣∣∣ .(4.13d)

The relation (4.2) implies that on every compact subsetI of [a, b] that excludes points
ŝ wheref (ŝ) is unbounded, there exists�2 < ∞, for n large enough such that the (equal)
quantitiest−1(�2), t̂−1(�2) are bounded.

Moreover, the fact that onI we have−1 + �� 2f (s)

1+
√

1+4f 2(s)
�1 − �, for some pos-

itive fixed � guarantees that there exists a fixed�̂ > 0, such that onI we have 1−
A2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
� �̂ > 0 for n large enough. The inequality (4.12b) yields then

the desired result (4.2).



296 H. Gingold / Journal of Approximation Theory 131 (2004) 284–305

Let us sketch the main features of the proof of (ii) in order to clarify the nature of the

technicalities that will follow. Unfortunately, the sequenceÃ

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
does not

converge tof (s) in the parabolic metric.

This is due to the fact thatt

[(
x

1−x2

)2]
x

1−x2
is not identical tox for 1− x2 < 0. We

keep in mind that we identifyxwith A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
and that we cannot guarantee

that 1− A2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
�0. However, it can easily be verified that

t

( x∣∣1− x2
∣∣
)2
 x∣∣1− x2

∣∣ =
{
x if 1 − x2�0,
x−1 if 1 − x2�0.

(4.14)

For the bulk of the values ofs on [a, b] , we have 1− A2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
�0 for

n large enough. This can be deduced from (4.2). If 1− A2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
�0, then

(4.2) tells us thatA2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
must be close to 1. Then the three quantities

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
, A−1

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)
, and 2f (s)

1+
√

1+4f 2(s)
are indeed close to

each other. These arguments motivate the technicalities below.
The relation (4.2) implies that for every
 > 0, there existsN(
) such that forn > N(
)

we have, on[a, b]

− 
 <
2f (s)

1+√
1+ 4f 2(s)

− A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
< 
. (4.15)

We identify on the interval[a, b], for each fixed�, 0 < � < 1, three subsetsIn, I+1n�
andI−1n� as follows:

In :=
{
s |s ∈ [a, b], − 1�A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
�1

}
, (4.16a)

I−1n� :=
{
s |s ∈ [a, b], − 1− ��A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
� − 1

}
, (4.16b)

I+1n� :=
{
s |s ∈ [a, b], 1�A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
�1+ �

}
. (4.16c)
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Evidently[a, b] = In ∪ I+1n� ∪ I−1n� if 
 is small enough andn is large enough. From
(4.16c) we derive the inequality

− 1� − 1

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)� − 1

1+ �
. (4.17)

Its combination with (4.16c) results in the inequality

0�A

(
2f (s)

1+√
1+ 4f 2(s)

, n, s

)
− 1

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

)� �(2+ �)
1+ �

. (4.18)

The combination of (4.15) and (4.18) implies that onI+1n� we have forn > N(
)

− 
 <
2f (s)

1+√
1+ 4f 2(s)

− 1

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

) < 
 + �(2+ �)
1+ �

. (4.19)

In a similar manner we have onI−1n�

− 
 − �
1+ �

<
2f (s)

1+√
1+ 4f 2(s)

− 1

A

(
2f (s)

1+
√

1+4f 2(s)
, n, s

) < 
. (4.20)

Evidently the relation (4.15) holds onIn. Choose now� = 
 < 1. Consider the set
of bounds on the right-hand side and on the left-hand side of (4.15), (4.19) and (4.20).

Then max
{

, 
 + 
(2+
)

1+
 , 
 + 

1+


}
< 4
. By virtue of (4.14), (4.15), (4.19) and (4.20) we

have that the sequence
A

(
2f (s)

1+
√

1+4f 2(s)
,n,s

)
∣∣∣∣1−A2

(
2f (s)

1+
√

1+4f 2(s)
,n,s

)∣∣∣∣ converges uniformly tof (s) on[a, b] in the

parabolic metric. �

The fact that on every compact subintervalI of [a, b], that excludes singularities of
f (s), we have lim

n→∞ sups∈I |f (s) − Â(f, n, s)| = 0, has a few useful implications. The

first implication is that if indeed
∣∣f (ŝ)∣∣ = ∞ for someŝ ∈ [a, b] then Â(f, n, s) must

become unbounded for a sequencesn → ŝ, sn ∈ [a, b] asn → ∞. This is an indica-
tion that if for n large enough,Â(f, n, s) possess singularitieŝsn, then these singularities
should cluster around̂s. Naturally, these singularities should coincide with the roots of

1 = A2
(

2f (s)

1+
√

1+4f 2(s)
, n, s

)
. It is plausible that an a priori knowledge of the nature of

smoothness and singularities off (s) could yield more precise information on the location
and nature of singularities of̂A(f, n, s) whenever they exist. This is born out by the theory
of Pade approximations. Compare e.g. with[2,10]. If f (s) ismeromorphic in a disk|s| < R,
then the poles of the Pade approximants converge to the poles off (s).
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It is possiblenow toobtain theanalogsofWeierstrass’theoremandFourier’s-type theorem
for functionsf (s) ∈ CAI [a, b]. By Weierstrass’ theorem there exist PolynomialsPn(s)

such that

lim
n→∞ sup

∣∣∣∣∣ 2f (s)

1+√
1+ 4f 2(s)

− Pn(s)

∣∣∣∣∣ = 0

uniformly on[a, b]. Consequently,̂Pn(s) := Pn(s)|1−P2
n (s)| is a rational function which approx-

imatesf (s) uniformly on[a, b] in the parabolic metric.
Letf (s) ∈ CAI [−l, l], l > 0,beaperiodic function such thatf (s+2l) = f (s), −∞ <

s < ∞. Then, under various assumptions on the smoothness off (s), e.g. [11,13], the
function 2f (s)

1+
√
1+4f 2(s)

�

possesses a converging Fourier series. The Fourier series are

approximated by the partial sumsFn(s), n = 0, 1,2, . . . . These are polynomials of
degreen in coss and sins. Consequently, the sequence of quotients of trigonometric
polynomials Fn(s)|1−F2

n (s)| , converges in the parabolic metric tof (s).

5. Unboundedly compatible approximations

The approximationŝA(f, n, s) discussed in the previous section do not guarantee that
Â(f, n, s) �= +∞ or −∞ wheneverf (s) �= +∞ or −∞, respectively, for alln =
1,2, . . . . We are only guaranteed that forn large enough,Â(f, n, s) �= +∞ or −∞, on
every compact subset of a finite interval[a, b] wheneverf (s) �= ∞ or −∞, respectively.
A natural question arises then. How large shouldn be in order to prevent a catastrophic
occurrence wherêA(f, n, s) = ∞ or−∞ for all valuess wheref (s) �= +∞ or−∞? An
answer to this is not readily available in the results of the previous section. One could use
trial and error in the process of practical implementation of numerical schemes in order to
avoid the mentioned catastrophical occurrences. However, it is preferable to look for means
that will advance our knowledge in these matters. In the process of providing such means
we will employ the Bernstein’s polynomials.
First we need some definitions.

Definition 5. Let g(s) ∈ C([0, 1]), thenth Bernstein’s polynomial is given by

Bn(s) :=
n∑

j=0

Cn
j s

j (1− s)n−j g

(
j

n

)
, for all n�1, and, s ∈ [0, 1], (5.1)

whereCn
j = n!

j !(n−j)! are the binomial coefficients.

Definition 6. Letf ∈ CAI [a, b].We define for each integern�1 the number of equidis-
tant pointss = a+ j (b−a)

n
, j = 0, . . . , n,wheref (s) = +∞, and the number of equidistant

pointss = a + j (b−a)
n

, j = 0, . . . , n, wheref (s) = −∞, respectively, asM(n,+∞) and
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M(n,−∞), that is to sayM(n,+∞) := card
({

j, j = 0, . . . , n, :f (a + j (b−a)
n

) = ∞
})

andM(n,−∞) := card
({

j, j = 0, . . . , n, :f (a + j (b−a)
n

) = −∞
})

.

Let V (s) be a vector function such thatV (s) ∈ CAI [a, b]. We denote for each inte-
gern�1 by K(n,∞), the number of equidistant pointss = a + j (b−a)

n
, j = 0, . . . , n,

where
∥∥∥V (a + j (b−a)

n
)

∥∥∥2 = ∑n
i=1 v

2
i (a + j (b−a)

n
) = ∞. That is to sayK(n,∞) :=

card
({

j, j = 0, . . . , n, :
∥∥∥V (a + j (b−a)

n
)

∥∥∥ = ∞
})

.

Definition 7. Let Â(f, n, s), n = 1,2, . . . bea sequence of approximants to a function
f (s) ∈ CAI [a, b]. We say thatÂ(f, n, s) is N unboundedly compatible withf (s) if
|Â(f, n, s)| �= ∞ whenever|f (s)| �= ∞ for n > N.

LetW(V, n, s) n = 1,2, . . . bea sequence ofvector approximants to a vector function
V (s) ∈ CAI [a, b]. We say thatW(V, n, s) isN unboundedly compatible with the vector
functionV (s) if ‖ W(V, n, s) ‖�= ∞ whenever‖ V (s) ‖�= ∞ for n > N.

The reason that Bernstein’s polynomials are a desired tool is revealed in the following
theorem.

Theorem 8. If f ∈ CAI [0, 1] is such thatM(n,+∞) < n + 1 andM(n,−∞) < n + 1
for n > N , N a fixed integer,then
(i) The sequence

Â(f, n, s) := Bn(s)

1− B2
n(s)

, n�1 (5.2a)

is N unboundedly compatible withf (s) and

Bn(s) =
n∑

j=0

2f (j/n)

1+√
1+ 4f 2(j/n)

Cn
j s

j (1− s)n−j . (5.2b)

(ii) Furthermore,Â(f, n, s) converge uniformly on[0, 1] to f (s) as n → ∞, in the
parabolic metric.

(iii) On every closed subsetI ⊂ [0, 1], such thatf (s) ∈ C(I) we have

lim
n→∞ sup

s∈I

∣∣∣∣f (s) − Bn(s)

1− B2
n(s)

∣∣∣∣ = 0. (5.3)

Notice that the results are easily transferable to[a, b] by means of the linear transfor-
mationy = x−a

b−a
that converts[a, b] into [0, 1].

Proof.We observe that

1 ≡ [s + (1− s)]n =
n∑

j=0

Cn
j s

j (1− s)n−j (5.4)
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and that

− 1� 2f (s)

1+√
1+ 4f 2(s)

�1. (5.5)

Hence,

− 1�Bn(s) =
n∑

j=0

2f (j/n)

1+√
1+ 4f 2(j/n)

Cn
j s

j (1− s)n−j �1. (5.6)

Obviously,Â(f, n, s) = +∞ iff Bn(s) = 1 or iff

n∑
j=0

[
1− 2f (j/n)

1+√
1+ 4f 2(j/n)

]
Cn
j s

j (1− s)n−j = 0. (5.7)

Each term in the sum given on the left-hand side of Eq. (5.7) is non-negative. Hence (5.7)
can be materialized iff for eachj, j = 0, 1,2, . . . , n, we have[

1− 2f (j/n)

1+√
1+ 4f 2(j/n)

]
Cn
j s

j (1− s)n−j = 0. (5.8)

There are three cases to be considered. The case 0< s < 1, the cases = 0 and the case
s = 1. If 0 < s < 1 thenCn

j s
j (1− s)n−j �= 0 for all j = 0, 1,2, . . . , n, n = 1,2, . . . .

This requires for fixedn

2f (j/n)

1+√
1+ 4f 2(j/n)

= 1, j = 0, 1,2, . . . , n, n = 1,2, . . . (5.9)

or

f

(
j

n

)
= +∞, j = 0, 1,2, . . . , n. (5.10)

Hence (5.10) requires(n + 1) equidistant points where (5.10) is satisfied.
This is impossible ifn > N . If s = 0, then 2f (0)

1+
√

1+4f 2(0)
= 1 iff f (0) = +∞. Similarly,

2f (1)

1+
√

1+f2(1)
= 1 iff f (1) = +∞. The arguments are similar for the case−∞. �

It goes without saying that iff (s) possesses a finite numberN of discontinuities then
Â(f, n, s) is N unboundedly compatible withf (s). Notice that Theorem 8 allowsf (s) to
possess infinitely many points of discontinuity that are not equally spaced. For example
consider the functionf (s) = s−1 csc2 �

s
. Evidently, f (s) ∈ CAI [0, 1] with points of

discontinuity ats = 0 and 1
m
, m a positive integer. We claim that̂A(f, n, s) is N = 2

unboundedly compatible withf (s). Assume by contradiction that this is false. Thens =
1
mj

= j
n
andj = 0, 1,2, . . . , n − 1, n, andmj some positive integers. This, for each fixed

integern in an infinite sequence of values ofn. This is so iff for fixednwe haven = jmj ,

andj = 0, 1, . . . , n− 1, n that implies thatn is divisible by(n− 1).This is impossible for
n > 2 and the conclusion follows.
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Let us proceed with an informal discussion of the approximations of periodic functions
f (s) = f (s + 2�) andf ∈ CAI [−�,�]. To this end we construct the coefficients

an = 1

�

∫ �

−�

2f (s) cosns

1+√
1+ 4f 2(s)

ds, (5.11)

bn = 1

�

∫ �

−�

2f (s) sin ns

1+√
1+ 4f 2(s)

ds, (5.12)

in order to obtain the partial sums

Fn(s) = a0

2
+

n∑
k=1

[ak cosks + bk sin ks], n = 0, 1,2, . . . . (5.13)

We generate the Cesaro sums

�0(s) = F0(s)

1
, �n(s) = F0(s) + F1(s) + · · · + Fn(s)

n + 1
. (5.14)

Evidently,�n(s) are “trigonometric sums” of degreen, n = 0, 1,2, . . . . Namely,�n(s)

are polynomials of degreen in the two variables coss and sins. By Fejer’s theorem,

�n(s) =
∫ �

−�
K(s, �, n)

2f (�)

1+√
1+ 4f 2(�)

d� (5.15a)

with K(s, �, n) the positive Kernel that satisfies

K(s, �, n) = 1

2�(n + 1)

[
sin (n+1)(�−s)

2

sin (�−s)
2

]2
. (5.15b)

See e.g.[7]. Consequently,m� 2f (s)

1+
√

1+4f 2(s)
�M impliesm��n(s)�M.

Moreover, ifM −m > 0 andM andmare the absolute minimum and absolute maximum
valuesof 2f (s)

1+
√

1+4f 2(s)
on(−∞,∞), respectively, thenm < �n(s) < M for−∞ < s < ∞.

To prove the above statement we notice thatM − m > 0 implies that there exists a point
�0 ∈ [−�,�] such that

M − 2f (�0)

1+√
1+ 4f 2(�0)

> 0. (5.16)

By continuity we have then
∫ �
−�[M − 2f (s)

1+
√

1+4f 2(s)
]K(s, �, n) d� > 0 or that

�n(s) =
∫ �

−�
K(s, �, n)

2f (�)

1+√
1+ 4f 2(�)

d� < M

∫ �

−�
K(s, �, n) d� = M. (5.17)

Ina similarmannerwehavem < �n(s) for−∞ < s < ∞. Since −1� 2f (s)

1+
√

1+4f 2(s)

�1, then−1 < �n(s) < 1, n = 0, 1,2, . . . for s ∈ (−∞,∞) if f (s) is not the constant
∞ or−∞.
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We can summarize formally the above discussion in the following theorem:

Theorem 9. Let f (s) ∈ CAI [−�,�] andf (s + 2�) = f (s). Then,
(i) there exists quotients of“trigonometric sums” �n(s)

1−�2n(s)
that converge uniformly tof (s)

on (−∞,∞), asn → ∞, in the parabolic metric.
(ii) On every subsetI ⊂ (−∞,∞), that excludes points where|f (s)| = ∞ we have

uniformly

lim
n→∞ sup

∣∣∣∣f (s) − �n(s)

1− �2
n(s)

∣∣∣∣ = 0. (5.18)

(iii) Moreover, 1− �2
n(s) > 0, for n = 1,2, . . . , −∞ < s < ∞.

The approximation of vector functionsV = V (s) = 〈v1(s), v2(s), . . . , vm(s)〉 , vk(s) ∈
CAI [a, b], k = 1,2, . . . , m, may be done in two ways. In the first way, each component
vk(s) could be approximated by a rational functionBkn(s)

1−B2
kn(s)

, with Bkn(s) the Bernstein

polynomials utilized in Theorem 8. This involves the simultaneous evaluation ofm dif-
ferent denominators andm different square roots in the expressions2vkn(s)

1+
√
1+4v2kn(s)

, k =
1,2, . . . , m. It is possible to obviate the necessity to calculate them different denominators
andmdifferent square roots by utilizing the parabolic compactification ofRn for the vector
functionV (s). Thus,making our computationmore efficient.Moreover, the approximations
could be made unboundedly compatible withV (s). This is given in the next proposition.

Proposition 10. LetV (s) ∈ CAI [0, 1]. LetK(n,∞) < n + 1 for n > N. Then,
(i) the vectorW = W(V, n, s) defined by

W(V, n, s) = 1

1−∑m
k=1B

2
kn(s)

〈B1n(s), B2n(s), . . . , Bmn(s)〉, (5.19)

with

Bkn(s) =
n∑

j=0

v̂k

(
j

n

)
Cn
j s

j (1− s)n−j , (5.20a)

v̂k(s) = 2vk(s)

1+
√
1+ 4

∑n
k=0 v

2
k (s)

, k = 1,2, . . . , m, (5.20b)

is N unboundedly compatible withV (s).
(ii) The vector approximantW(V, n, s) converge toV (s) uniformly on[0, 1] asn → ∞,

in the parabolic metric.
(iii) On every closed subsetI ⊂ [0, 1], such thatV (s) is continuous we have

lim
n→∞ sup

s∈I
||V (s) − W(V, n, s)|| = 0. (5.21)
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Proof.Wewill prove only (i) of the proposition as the proof of the other parts is obvious.We
will show that

∑m
k=1B

2
kn(s) = 1 is impossible ifn > N. To this end define two quantities

J1 andJ2, such that

m∑
k=1

B2
kn(s) =

m∑
k=1

 n∑
j=0

v̂k

(
j

n

)
Cn
j s

j (1− s)n−j

2

= J1 + J2, (5.22)

where

J1 =
m∑

k=1

n∑
j=0

v̂2k

(
j

n

)
[Cn

j s
j (1− s)n−j ]2

=
n∑

j=0

[Cn
j s

j (1− s)n−j ]2
m∑

k=1

v̂2k

(
j

n

)
(5.23)

and

J2 = 2
m∑

k=1

∑
j1 �=j2

v̂k

(
j1

n

)
v̂k

(
j2

n

)
Cn
j1
Cn
j2
sj1sj2(1− s)n−j1(1− s)n−j2. (5.24)

The second sum in (5.24) is takenover all indicesj1 andj2, such thatj1, j2 = 0, 1, . . . , n,
andj1 �= j2. It is readily observed that after the change of order of summation inJ2 we
obtain

J2 = 2
∑
j1 �=j2

Cn
j1
Cn
j2
sj1sj2(1− s)n−j1(1− s)n−j2

m∑
k=1

v̂k

(
j1

n

)
v̂k

(
j2

n

)
. (5.25)

By virtue of the Cauchy–Schwarz inequality we have

m∑
k=1

∣∣∣∣v̂k (j1n
)
v̂k

(
j2

n

)∣∣∣∣ �
[

m∑
k=1

v̂2k

(
j1

n

)] 1
2
[

m∑
k=1

v̂2k

(
j2

n

)] 1
2

. (5.26)

Consequently,

|J2| �
n∑

j=0

[Cn
j s

j (1− s)n−j ]2
[

m∑
k=1

v̂2k

(
j1

n

)] 1
2
[

m∑
k=1

v̂2k

(
j2

n

)] 1
2

. (5.27)

We now make a few observations. We have
∑m

k=1 v̂
2
k (s)�1 and equality holds if

∑m
k=1

v2k (s) = ∞, for some values in [0, 1].Consequently, by (5.23) and (5.27) we have
m∑

k=1

B2
kn(s)= J1 + J2�

n∑
j=0

[Cn
j s

j (1− s)n−j ]2

+ 2
∑
j1 �=j2

Cn
j1
Cn
j2
sj1sj2(1− s)n−j1(1− s)n−j2
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×
[

m∑
k=1

v̂2k

(
j1

n

)] 1
2
[

m∑
k=1

v̂2k

(
j2

n

)] 1
2

≡
 n∑
j=0

Cn
j s

j (1− s)n−j

2

= 1. (5.28)

Moreover, the equality
∑m

k=1B
2
kn(s) ≡ 1 = [1− s + s]2n, holds if∑m

k=1 v̂
2
k (

j
n
) = 1, or

if
∑m

k=1 v
2
k (

j
n
) = ∞, for all j = 0, 1,2, . . . , n. This is impossible ifn > N and the result

follows. �

Remark 11. Thecompactificationpresentedhereemploysabijection that is aC∞ function.
There are simpler compactifications likez1+‖z‖ , that could achieve similar results. Themain
difficulty in working with compactifications like z

1+‖z‖ is that they are not smooth enough.

The mapping belongs toC1 but not toCk, k > 1, whenn = 1, and is not smooth forn > 1.
This could become a serious theoretical and practical handicap. Notice also that ifz is a
polynomial then z

1+‖z‖ could be either z1+z
or z

1−z
.Namely, two different polynomials may

be involved.

Remark 12. Monotone approximation operators, that include the Bernstein operator as a
particular case, could lead to other interesting unboundedly compatible approximations.
Other positive kernels, that include the kernel in (5.17) as a particular case, could achieve
similar goals.

Acknowledgements

Many thanks to the reviewers. Their suggestions improved considerably style and
precision.

References

[1] R. Askey, Orthogonal Polynomials and Special Functions, SIAM Publications, Philadelphia, PA, 1981.
[2] G.A. Baker Jr., P. Graves-Morris, Pade Approximations, vols. I, II, Reading, MA, 1981.
[3] E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, NewYork, NY, 1966.
[4] T.S. Chihara, An Introduction to Orthogonal polynomials, Gordon & Breach, NewYork, NY, 1978.
[5] F.C. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press, Cambridge,

2001.
[6] Y.I. Gingold, H. Gingold, Geometric properties of a family of compactifications, preprint, 2004.
[7] G.G. Lorentz, Approximation of Functions, Chelsea Publishing Co., NewYork, NY, 1986.
[8] I.P. Natanson, Constructive Function Theory, vols. I, II, F. Ungar Publishing Co., NewYork, NY, 1964.
[9] J.R. Rice, The Approximation of Functions, Nonlinear and Multivariate Theory, Addison-Wesley, Reading,

MA, 1969.
[10] E.B. Saff, R.S. Varga, Pade and Rational Approximation, Theory and Applications, Academic Press, New

York, 1977.



H. Gingold / Journal of Approximation Theory 131 (2004) 284–305 305

[11] G. Sansone, Orthogonal Functions, Interscience, NewYork, NY, 1959.
[12] G. Szego, Orthogonal Polynomials, fourth ed.,AmericanMathematical Society ColloquiumPublication, vol.

23, American Mathematical Society, Providence, RI, 1975.
[13] A. Zygmund, Trigonometric Series, Warsaw, 1935.


	Approximation of unbounded functions via compactification
	Introduction
	Bijections induced by the parabolic compactification
	The metric induced
	General and rational approximations
	Unboundedly compatible approximations
	Acknowledgements
	References


