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Abstract

Approximants to functionsf(s) that are allowed to possess infinite limits on their interval of
definition, are constructed.

To this end a compactification d®”" is developed which is based on the projectior®¥f on a
bowl-shaped subset of a parabolic surface. This compactification induces a bijection and a metric
with several desirable properties that make it a useful tool for rational approximation of unbounded
functions.

Roughly speaking this compactification enables us to show that unbounded functions can be ap-
proximated by rational functions on a closed interval; thus we also obtain an extension to Weierstrass’
celebrated theorem. An extension to a Fourier-type theorem is also obtained. Roughly speaking, our
result states that unbounded periodic functions can be approximated by quotients of certain trigono-
metric sums. The characteristics of the main results are the following. The approximations do not
require the original approximated function to possess a restricted rate of growth. Neither do they
require that the approximated function possess any amount of smoothness. Moreover, the numerator
and denominator, in an approximating quotient are guaranteed not to vanish simultaneously. Further-
more, some of the proposed approximations are guaranteed to be bounded at every point at which
the original approximated function is bounded. Beside the tool of compactification we also employ
Bernstein polynomials and Cesaro means of “trigopnometric sums”.
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1. Introduction

The purpose of this study is to offer approximations to unbounded functions and to un-
bounded vector functions. Some of the celebrated results in approximation theory include
Weierstrass’ and Fourier-type theorems. Weierstrass’ theorem states that every function
f(s) € Cla, b] can be uniformly approximated by polynomials. A Fourier-type theorem
(roughly speaking) states that a continuous periodic functiofi-ax, co) can be approx-
imated by a quotient of “trigopnometric sums”. The features of our approximations are as
follows.

The approximations do not impose restrictions on the order of growth of the unbounded
approximated function at its singular points. Neither do they require analyticity or high
order of smoothness from the approximated functigias. Moreover, the numerator and
denominator, in an approximating quotient are guaranteed not to vanish simultaneously. Fur-
thermore, the proposed approximations are guaranteed to be bounded at every point where
the original approximated function is bounded. Usually, the conventional approximations of
unbounded functions imposes restrictions on the order of growth of the approximated func-
tions at their singular points. See e.g. [1,3-5,8,9,11,12]. Usually, an approximated function
needs to possess a certain amount of smoothness. This is the case in the theory of Pade
approximants. Functions must be meromorphic or “somehow related” to a meromorphic
function. This is also the case in the theory of Jacobi and other orthogonal polynomials. For
example, in the case of Jacobi polynomials the given approximated funatioon[—1, 1]
cannot grow faster, at= +1, than(1—s)*(1+s)” for somex, p real. Itis noteworthy that
there is no guarantee that the numerator and denominator, in a Pade approximant will not
vanish simultaneously. Neither is there guarantee that a Pade approximant will be bounded
at all points where the approximated function is bounded.

The following definition describes the nature of functions that are called “continuouslike
accepting infinitudes”. These are the generic functions to be approximated in the current
study.

Definition 1. The functionf is called continuouslike accepting infinitudes fn 5], in

short, f(s) € CAlla, b}, if for everys € [a, b] one of the two conditions are met;

(a) fis continuous af € [a, b] or

(b) fis discontinuous at € [a, b], but there exists limLs f(s), and then suchk satisfies
that

lim f(s) =oco0r lim f(s) = —oc. (1.1

§—>5
If 5 = a (respectivelys = b) we assume that

fat) =ooor f(at) = —o0, respectively
(™) =o00o0r f(b™) = —00. (1.2)

Notice thatf continuous af = a (respectivelyf continuous af = ») means as usual,
there existsf (a™) := lim,_,+ f(s) and f(a) = f(a™) (respectively, there exists
F&7) =limg_ - f(s)andf(b) = f(b7)).
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The vector functionV (s) = (vi(s), v2(s), ..., v, (s)), is said to be continuouslike
accepting infinitudes ofu, b], in short

V(s) € CAlla, b], if each componenty(s) € CAl[a,b],k=1,2,...,m.

It is evident from the definition that we impose no restriction on the rate of growth of a
function f(s) € CAl[a, b], at its singular points.

The main tool for obtaining the extensions to Weierstrass’ and Fourier’'s theorem is the
parabolic compactification, to be developed in the sequel.

We denote a sequence of generic approximantsibg. n, s) or by A(f, n,s), n =
1,2,3,....

The order of events in this work is as follows. In Section 1 we construct certain mappings
from a certain set, to be called the “ultra extend®t, to a parabolic surface, 1 =
x2 + x3 + --- + x2. Two bijections from the “ultra extende®"” are constructed. One of
the bijections maps the “ultra extend®d” to a bowl-shaped set on the parabolic surface.
In Section 3, we construct a metric that is induced by the compactification in Section 2. In
Section 4 we formulate and prove a theorem about generic approximations to functions that
are continuouslike accepting infinitudes on an intefualb]. Extensions to Weierstrass’
and Fourier's theorem are also obtained. In Section 5, we discuss approxiighis s)
that are “Ntotally compatible” with a functionf(s) € CAl[a, b]. These approximants
A(f,n,s),n = N, N + 1,... are such thatA(f, n, s)| # oo whenever|f(s)| # oo.
They could be useful in theoretical and practical considerations when delegating to a digital
computer the task of numerical approximations of unbounded functions. We also consider
the approximation of periodic function&s) on (—oo, o0) that belong taC AI[{—=, n] and
f(s +2m) = f(s). Ultimately, we consider vector functions(s) = (vi(s), ..., v,(s)) €
CAlla,b).

The development of the compactification here has been influenced by the[&york
In [6] the complex plane is supplemented by a continuum of ideal points that account
for “all directions at infinity”. The complex plane is then mapped onto a spherical bowl.
Its boundary is the image of the continuum of ideal points supplementing the complex
plane. Topologically the compactification employed in this work is equivalent to the com-
pactification developed if6]. Unfortunately, the compactification {6], possess radicals
that prevent it of being a tool for rational approximations.

2. Bijections induced by the parabolic compactification
Consider the set of points IR" given by
R" = {zlz = (01, ..., %), —00 < aj <00, j=1,2,...n}, (2.1)
together with the ideal séD defined by
ID := {ooulu € R" and 1= ||u|® = u? + u3 + - - - + u?}. (2.2)

The setR" U I D will be called the ultra extended”.
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Consider a fixed poinP € R"™*1, P = (0,0, ..., 0, ), with y > 0 a fixed real number.

Henceforth we identify a point = (g, ..., o) with a point
0 e R”+1WhereQ = (o1, ..., 0y, 0). The coordinates ofapoidt = (x1, ..., xu, Xp+1)
on the straight lineP? Q is given for some real numbéby the formula
PZ =1PO. (2.3)

The vector relation (2.3) is equivalent to

X1 =101, ..., Xy =10y, Xppl—7) = —1). (2.4)
The straight linéPQ intersects the parabolic surface

Xn+1 =xf+~-~+x3 (2.5)

at two points. One of the two points, s&y where the linePQ intercepts the parabolic
surface is “betweenP andQ. Then 0<¢ <1 in the relation (2.3). IZ “is not betweenP
andQ thenr in (2.3) is negative. In this manner two images of the ultra exteritledre
generated on the parabolic surface. One of the images is a bounded parabolic bowl that is a
closed set. The other image, that is unbounded, shares a circle as a common boundary with
the parabolic bowl. This circle is the image of the ideal points augmenting the &t of
with all “directions at infinity”. We can thus determine two bijections between the points
Q € R" U ID and certain subsets of the parabolic bowl as described above.

From (2.4) we obtain after squaring that

o 2R 2= 22 2.6)

After summing the squares we get
R?>=1%2 R=tIr, (2.7)
with
RE=x?4...4+x2 rP=c+... 402 (2.8)
Combining (2.5) withx,+1 = y(1 — t) we have
R2
Xpp1=R2=y1—1) =132 1=1— > (2.9)

Solving the quadratic equatigril — ¢) = 1272 for t we have

R? 2 R?
t=1— —=— = jf1-=—>0, (2.10a)

RN = v

(2.10b)
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The formula (2.10a) enables us to write the coordinates, adn the parabolic bowl, in
terms of the coordinates afas follows:

20{1 20(,,
X]= ——, ..., X =

14 J14 42 14, /1+ %

14421
1=yl —1) =7y - (2.11)
1+%-+1
We also have vigk = |7| r in (2.7)
22r2 2
R=— 2 goZ (212)
1+ /1+ %P2 1+,/14+ %
From the relation =1 — RT,Z we can obtain the inverse relations
X1 X1 Xn Xn
al—T—l_R_Z,...,OCn—T—_—R_Z, (213)
Y 7]
together with
R2 R? R
2= . (2.14)

= = —————5, y = ——
SRS SR .
_7 )

Notice that (2.11) holds only witd on the parabolic bowl and of coursed@ < 1. Thus
(2.11) together with (2.13) determine one of two possible bijections. On the other hand

(2.13) detached from (2.11) could serve a dual purpose. V\A{h&/i > 0 we obtainR" as

the image of the parabolic bowl. With = 1 — 1372 < 0 we obtainR" as the image of the
unbounded portion of the parabolic surface.

The relation (2.13), is central to our results about approximations via rational functions.
The reason being is that, . . ., o, are rational functions ofy, .. ., x,,.

So far we have established a bijection fré&¥hto a subset of the parabolic surface (2.5). It
is only natural now to take the limitin (2.11) as—> oo in order to determine the definition
of the correspondence between a paint /D and a pointZ on the parabolic surface.
Consider, the relation

20, 20, 2o
xk: = = T
42 ” I 2
BV ) e ()
ﬁ Ok
S —), k=1,...,n, 2.15
%(r) & (2.15)

§+[$+1]
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for > 0. The coefficient of% in (2.15) tends ta/y asr — oo. Notice also that ~

4 — 0 asr — oo. Itis now natural to match a poisbu € I D with the pointZ on the
parabolic surface as follows:

X1= YUt o Xn = PUns Xnp1 =7 (2.16)

We add now the following definition:

Definition 2. The parabolic bowl is the set of poinls= (x1, ..., x,, x,+1) defined by

Parabolic bowt= {Z [ x? + - -- 4+ x2 <7, 0< 11 <)) (2.17)

Notice, that in the case that= 2, our surface is obtained from revolving a parabola
X3 = xf about thexz-axis. We then obtain a bijection of the ultra extended complex plane to
a bowl-shaped set on the parabolic surface. Each poiitbs 6, sin 0) € I D, 0<0 < 2xn
is matched with a poinZ = (,/y cos0, ,/y sin 0, y) on a circle which is the boundary of
the parabolic bowl.

We are ready now to summarize the discussion above by the following theorem.

Theorem 3. Define the mapping

X1 =101, ..., Xy =10y, Xpp1=7yA—1) (2.18)
with
2 2 2 2 n
f=—2, re=oi+-4o, z=(u,...,0) €R (2.19)
1+ 1+ %
and
X1 = ﬂub e Xp = VUn,  Xpy1 =7 (2.20)

for z = oou, ||u||? = 1. Then this mapping establishes a bijection frd&i U I D to the
closed set of the parabolic bowl. The inverse of this bijection is given by
X1 Xn
1_R_2,...,Oln=_—R_2.
7

(2.21)

Eachoy, k = 1,2, ..., n,is arational function of the variablesy, x», ..., x,.
We denote the bijection developed in formy24.8)—(2.21py Z = G(z).
We also have fot € R" the mapping

1+,/1+% ~1+J1+%3

0Ly ey Xy = —
2r2 " Y 2r2

1+ /1442
N S (2.22)

2r2

X1 =—7 O s

X1 =7 |1+
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and forz = oou, ||u||? = 1 we have

X1 = —PUl, o Xy = —PUn, Xl =) (2.23)
The relationg2.22), (2.23){ogether with the inverse relations given (&13)establish
a bijection fromR" U I D to the subset of the parabolic surface given by

R2
{Z|Z = (XL, Xs Xpg1), RZ=x2 4. 4 x2, and 1 — - <o}. (2.24)

3. The metric induced
In this section, we develop a metric on the B&tU I D that is induced by the compacti-

fication of R".
Supplement the notations of Section 1 by the following:

n
A A~ ~ > o~ ~ o~ ~2 2 :AZ
Zz(ala-"7an)5 Zz(xl7‘-'axnaxn+l)a ro= OC]',
=1
_ =2 2 s 2 N
=X+, ..., +x,, 1= = (uy,...un)

We define a metrig(z, z) on R" U I D by the Euclidean distand¢Z — Z||. Namely,
1@ =1Z -2l =1Gk) — G| (3.1)

We proceed now to express the distance between two poifitsin/ D in terms of their
coordinates. By the definition of the Euclidean distance we have

n
NZ = ZIP=)" @& — x)?+ Enp1 — Xup1)?

j=1
n n n
=D &P+ af =) 208+ Epr — 1) (3.2)
j=1 j=1 j=1
Substitute in (3.2)f+1 =34 )ef Xnp1= Y1y xf Then,
n
1Z - Z”Z = in—&-l + Xp41 + (£n+1 — Xn+1)2 — Z ZX./')E./'. (3.3)
j=1

Now substitute in (3.3)f,41 = y(1 — 1), xu41 = YL — 1), X = 18, xj = toj, j =
1,....n,and obtain

n
1Z = ZIP = y21F — 1P + 92— (¢t + D] — 20t Y a8, (3.4)
j=1
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We utilize the Euclidean distance Rf', namely,
n n n n
~ 2 ~
DI=) Gj—ap?=) H+) % -2) wk
j=1 j=1 j=1 j=1

n
=242 —=2) " a8, (3.5)
j=1
and we substitute in (3.5)

n
—2) ajb;=D*—F*— 12 (3.6)
j=1
Thus we obtain
Z — ZI1? =92[f — 112+ y[2 — (¢ + D]+ ti[D? — 72 — 2]

; A ~ 1-— 1—
=V2[f—f]2+v[2—(t+t)]+n[02_V( p n - ﬂ]’

by virtue ofr2 = 2320 andp2 = 20

We now rewrite the right-hand stide of (3.4) as follows:
yA=0 A=D1 yl2- @+ f)]}
> T T = + = .
t t tt tt

1Z — Z|I? = tf[DZ—

A short calculation reveals that,
217 2 2
o . t—t 1 1
1Z ~ 217 =1i [DZ+ il —y(: - -) ]
tt

Pt
) 1 1\? .
:tt{Dz—y<?—;> [1—ytt]}. (3.7)
Finally, we have an expression of the metric in terms of the coordinateard?,
. . . . t—1)2
1z, 2)=11G@) — G| = \/”DZ +92[7 — 112 - %
. 1 1)\?

Thiswithi = —2— and = —2—.
1+‘/1-|-4;—‘2 1+,/1+4§—,2
If one of the pointz or Z is in the ideal set ID, say = oou, ||u|| = 1, then we obtain
directly from (3.2)

wloou,2) = | Y (o — \fjuj)? + 722, (3.9)
j=1
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This, by virtue of the fact that ~ 4 — 0asr — oo.
Moreover, withz = ocou, ||u|| = 1 andz = oou, ||iu|| = 1 we have

y(cou, ooit) =

(3.10)

A lengthy but straightforward calculation yields the metric expressed explicitly in terms
of D? and the radial distance$ and#2. Videlicet,

22
[1+/1+ %2][1+ 1+ %J

=12 - 21> =

22y

1+ /1+ 21+ 1+ 42

22
[+ /1+ 21+ 1+ 42

22(r? — #2)2
x { D?
v[\/1+4’ +\/1+
2%
x[1- - _ (3.11)
[1+ 1+ %01+ 1+ %]
Since \/1+4’ —\/1+ i (i

,/1+4’ +,/1+4’ ]
Let us calculate in the cage= 2 the parabohc distance between two points in the ideal
setl D. A straightforward calculation reveals that

y(00(cos 0, sin 0), co(cosi, sin ¥)) = /2y[1 — cos@ — )]
0—
—25fsin 0]

sin

In particular, ifn = 1, the parabolic distance between +ard—oco is 2, /7.

Although the parameteradds a coordinate of freedom to our setting, we will take 1
in the remaining sections.
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4. General and rational approximations

In this section, we point out how to employ general type approximations in the service
of members of the familyC AI[a, b]. We also derive an extended Weierstrass theorem
and an extended Fourier-type theorem. We observe figt € CAl[a, b] implies that

2f(s)
€ Cla, b].

144/14+412(s)

Hence, any approximation sequence, that is available in the literature, that approximates
the continuous functior—2.%__ ¢ C[q, b]in the supremum norm, is an approximation

1+/1+472(s)

tool for f(s) € CAlla, b]. The special nature of the parabolic compactification becomes
then crucial in obtaining rational approximations.
The following proposition employs quite general approximants.

Proposition 4. Considerf(s) € CAlla, b]. Define the sequench = X(#

+/1+412(s)”
n, s) that is given by
A 2f(s)
PO T/ T @)
S 1 A(—2HO ) '
1+4/1+472(s)"
Assume that uniformly di, ],
. 2f(s) 2f(s)
lim supA{ ————,n,s | - ————————| =0. (4.2)
n—00 <1+\/1+4f2(s) ) 14+ /1+4f2(s)
Then
(i) on every compact subset | @, b] that excludes points, where f (s) is unbounded
we have
: ~ 2f(s)
lim sup|f(s) —A| ——=——o— n,s||=0. (4.3)
n—0o0 iej (1+,/1+4f2(s) )

A(izf(‘r) > ,n,s)
(i) The sequence ”V“Z‘;;’( )(”
S

12— s
) ] <1+«/1+4f2(s) 3
parabolic metric

)‘ converges uniformly ofu, b] to f(s) in the

Proof. A proof of (i) requires to show that a small neighborhood on the parabolic bowl
must be the image of a small neighborhoodR¥fif the neighborhood iR" is confined

to a compact subset &". This follows by scrutinizing the relation betwegf(z, 2) and

D? =| z — 2 ||? in formulas (3.8), (3.11) and the related quantitiesxd7. To that end
notice that the functiohis a monotone decreasing functionéfsince

ot —4

B (142 P e 2]

< 0. (4.4)
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Therefore,s(0) = 1, t(c0) = 0 and 0<¢ < 1. Moreover, ifr2<C2 < oo, then 0 <

0<t<1lwithd = — 22— Recall that
14+/14+42 /7
2

o2 K #JV_@—E>F

1+ /1+% ’ v

R2

7'22—1 R2 2, .X',H_l:Rz:“/(l—t).

Q-1

From R? = y(1 — 1) andt a decreasing function o we conclude that?<(? < oo
implies

2

kafm%<%1—%%@»a (45)
From (3.8) we have
)2

. . . (t—1 . Al
1D? = 72z, ) — 2 — 124 = =X2(Z,Z)+“/(t—f32[(”) 1—7]- (4.6)

We intend to find a bound on the factar — )2 on the right-hand side of (4.6), in terms
of ¥°(z, 7). We have

N2 R? 2\ “1h 2P 4 2
W= =7 (1—7>— L= )| =R - 2R+ R, 4.7)

From (3.2) we conclude that

n
P2 =R*+ R2 =2 x;%j + (R— R)

j=1
> R?+ R? - 2RR + (R> = R??
= (R - R [1+ (R+ R)Z] >(R— R)2. (4.8)

This is so by the Cauchy—Schwarz inequality, as

i
2

n n 2 n
Zx,-;?j < ZX}Z Z)?}Z = RR. 4.9
j=1 j=1 j=1
Hence,
| R—R| <y(z?2). (4.10)

Utilize in (4.6) the conclusions (4.7) and (4.10) and obtain

I1i| D2< [1 9 YR + R)2 (|¢f|‘1 n /)] 2z 2. (4.11)
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Finally we conclude from (4.11) the relation

D2 < i 14+ R+ B (Jorf 7 +1)] e D
R? g2\
(505
7 7
. R? 2\
x| 1+ ((R+R?||y (1 — 7) (1 — 7)‘ +1| | 4%z 2. (4.12a)

Recall the relation (4.5), wheré <(? < oo andr2< {2 < oo, imply 1 — 1372 >t(%) >0
and 1— % >1((% > 0 and obtain

<

D2< [r(zz)]_z {1 + [2&(&:2)]2 (vl [t(cz)]_z + 1) } 2 8). (4.12b)

Hence, ify(z, % ) tends to zero so dod3? for r2, #2< (% < oo.
Itis now possible to conclude the proof of (i) by pointing out the following relations. Put
in (4.12)y = 1 and put

2f(s)

= , Z=G(z1)= ————, 4.13
2f(s)
54 21 (s) . A <1+./1+4f2(s)’n’s>
Al —=L s z= ., (4.13b)
1+ /1+412(s) 1_ A2 2/() g
14+4/1+472(s)"
21 (s)
=1fOl, R=|——F—e—, 4.13¢
r=le 1+/1+4f2(s) (4139

()
14+4/14+452(5)"
C F= VAT (4.13d)

1_ A2 2f(s)
<l+«/1+4f2(s) TS

The relation (4.2) implies that on every compact suliset [a, b] that excludes points
s where £ (§) is unbounded, there existé < oo, for n large enough such that the (equal)
quantities ~1((?), 7~1({?) are bounded.

Moreover, the fact that oh we have—1 + 0< 2/6) <1 — 0, for some pos-

1+4/1+4£2(s)

-~

itive fixed 0 guarantees that there exists a fixéd> 0, such that onl we have 1—

A2 (H\/z%m n, s) >0 > 0 for n large enough. The inequality (4.12b) yields then
the desired result (4.2).

R=1A & n.s
14+V1+452%s)
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Let us sketch the main features of the proof of (ii) in order to clarify the nature of the
technicalities that will follow. Unfortunately, the sequentcé —2£&) does not
Y q <1+«/1+4f2(s) e

converge tof (s) in the parabolic metric.

2
This is due to the fact that[(#) } l+x2 is not identical tox for 1 — x2 < 0. We

. . . . . 2£(s)
keep in mind that we identify with A (—Hm, n, s) and that we cannot guarantee
A2 2f) > ; : o
that1—- A (1+x/1+47f2(5>’ n, s) > 0. However, it can easily be verified that
? if 1 —x2>0
x X x if1—xc>0,
! <|1_x2|> 11— x2| _{x_l if 1 —x2<0. (4.14)
42 2f(s) S
For the bulk of the values a&fon[a, b], we have 1— A <1+~/1+47f2(s)’n’ s) >0 for

n large enough. This can be deduced from (4.2).4f 242 ( —2L®)__ s) <0, then

14+4/14+4f2(s)"

(4.2) tells us thatd? ( 2/() s) must be close to 1. Then the three quantities

’ n?
1+4/1+4f2(s)
2£(s) -1 2£(s) 2£(s)
Al —=—==—=—n,5), A — = n,s |, and —F——
(1+«/1+4f2(5) ) (1+«/1+4f2(s) ) 1/ 1+412(s)

each other. These arguments motivate the technicalities below.
The relation (4.2) implies that for every> 0, there existsV(¢) such that fon > N (¢)
we have, oria, b]

e 2/ () —A 2/, s) < (4.15)
1+ /1+4£2(%s) 1+ /1+4£2(0s)

We identify on the intervala, b], for each fixed), 0 < 0 < 1, three subsets,, 11,9
and/_q, as follows:

are indeed close to

21 (s)
I, .= b, —1<A| ——————, n, <1, 4.16a
s|s € la, b] <l+ l+4f2(s) n s) } ( )

2f(s) s
1+ /1+4f2s)

I 10:={sls€la,b], —1— 0<A( ) < - 1} , (4.16D)

14+ V1+4f23s)

Ii1,0 = 1515 €la,b], 1<A ( 2/ ) n,s) <1+ 9} . (4.16¢)
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Evidently[a, b] = I, U I 11,9 U I_1, if €is small enough and is large enough. From
(4.16c) we derive the inequality

—n,S
144/14+412(s)

The combination of (4.15) and (4.18) implies thatkn,g we have fom > N (¢)

1 1
—1< - - . (4.17)
Al—29 140
1+4/14+4f2(s)"
Its combination with (4.16¢) results in the inequality
2f(s) 1 02+ 0)
0SKA| —————=n,5| — < . (4.18)
(1+\/1+4f2(s) ) A( 2f(s) ) 1+0

2f(s) 1 02+ 0)
—e< — <e+ —". (4.19)
1+V1+4726) 4 266 1+0
14+/1+472(s)"
In a similar manner we have dn 9
0 2/ () 1 < (4.20)

40 14 V/1+4720) 420,
1+/1+472(s)"

Evidently the relation (4.15) holds oh. Choose nowd = ¢ < 1. Consider the set
of bounds on the right-hand side and on the left-hand side of (4.15), (4.19) and (4.20).

Then max{g, g BZHD oy ﬁ} < 4¢. By virtue of (4.14), (4.15), (4.19) and (4.20) we

1+e

A(*me ,n,s)
have that the sequenee 1“”2‘;{2)(” converges uniformly tgf (s) on[a, b]inthe
A2 41s)
Tl A (1+«/1+4f2(.v)’n’s)

parabolic metric. [J

The fact that on every compact subintervadf [a, b], that excludes singularities of
f(s), we have lim sup; [f(s) — A(f,n,s)| = 0, has a few useful implications. The
n—0o0

first implication is that if indeed f(5)| = oo for some§ € [a, b] then A(f, n,s) must
become unbounded for a sequenge— §, s, € [a,b] asn — oo. This is an indica-
tion that if for n large enoughA( £, n, s) possess singularitie, then these singularities
should cluster arounfl. Naturally, these singularities should coincide with the roots of

1=A2(—2© It is plausible that an a priori knowl f the nature of
<1+m,n,s s plausible that an a prio owledge of the nature o

smoothness and singularities fs) could yield more precise information on the location
and nature of singularities of( f, n, s) whenever they exist. This is born out by the theory
of Pade approximations. Compare e.g. J&.0]. If f(s) is meromorphicinadisls| < R,
then the poles of the Pade approximants converge to the poj&s of
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Itis possible now to obtain the analogs of Weierstrass’theorem and Fourier’s-type theorem
for functions f (s) € CAl[a, b]. By Weierstrass’ theorem there exist Polynomiglss)
such that

2f(s) B
14+ /14+4F2(s)
Py(s)

uniformly on[a, b]. Consequentlyp, (s) := = P2)] is a rational function which approx-
imatesf (s) uniformly on[a, b] in the parabolic metric.

Letf(s) € CAI[-1,1],] > 0, beaperiodicfunction suchthft{s+2/) = f(s), —oco <
s < oo. Then, under various assumptions on the smoothnesqof e.g.[11,13], the
function LS)Z possesses a converging Fourier series. The Fourier series are

14, /14350

approximated by the partial sunfs,(s), n = 0,1,2,... . These are polynomials of
degreen in coss and sins. Consequently, the sequence of quotients of trigonometric

polynomials |lf'jp(§()s)| , converges in the parabolic metric fs).

lim sup

n—oo

Pn(s)‘ =0

5. Unboundedly compatible approximations

The approximationsi(f, n, s) discussed in the previous section do not guarantee that
A(f.n,s) # +oo or —oo Wheneverf(s) # —+oo or —oo, respectively, for alln =
1,2,... . We are only guaranteed that folarge enoughA( f, n, s) # oo or —oo, on
every compact subset of a finite interyal b] wheneverf (s) # oo or —oo, respectively.

A natural question arises then. How large shouloe in order to prevent a catastrophic
occurrence wheré(f, n,s) = oo or —oo for all valuess where f (s) # 400 or —co? An
answer to this is not readily available in the results of the previous section. One could use
trial and error in the process of practical implementation of numerical schemes in order to
avoid the mentioned catastrophical occurrences. However, it is preferable to look for means
that will advance our knowledge in these matters. In the process of providing such means
we will employ the Bernstein’s polynomials.

First we need some definitions.

Definition 5. Let g(s) € C([0, 1]), thenth Bernstein’s polynomial is given by

n .
Bu(s) =Y Cls/(1—s)""/g <i) , foralln>1, and s € [0, 1], (5.1)
j=0 "
whereC” = - are the binomial coefficients.
J Jin=p!

Definition 6. Let f € CAI [a, b]. We define for each integer> 1 the number of equidis-
tant points = a+@,j =0,...,n,wheref(s) = +o0, and the number of equidistant
pointss = a + N’n—_“)] =0,...,n, wheref(s) = —o0, respectively, ad/ (n, +00) and



H. Gingold / Journal of Approximation Theory 131 (2004) 284—-305 299

M (n, —o0), thatisto say! (n, +o0) := card ({] j=0,...,n:f(a+ @) = oo})

andM (n, —oo) := card ({] j=0,...,n,:f(a+ @) = —oo})
Let V(s) be a vector function such that(s) € CAI[a, b]. We denote for each inte-
gern>1 by K (n,00), the number of equidistant points= a + M,j =0,...,n,

n

. 2 .
where HV(a + @) =>", vl.z(a + ’("n—*“)) = oo. That is to sayK (n, 00) =

card({j,j:0,...,n,:HV(a+@)H :oo}).

Definition 7. Let A(f,n,s), n = 1,2, ... bea sequence of approximants to a function
f(s) € CAlla, b]. We say thatA(f,n,s) is N unboundedly compatible wittf (s) if
|A(f, n,s)| # oo whenevel f(s)| # oo forn > N.

LetW(V,n,s)n =1,2,... bea sequence ofector approximants to a vector function
V(s) € CAlla, b]. We say that¥ (V, n, s) is N unboundedly compatible with the vector
functionV (s) if | W(V, n, s) ||# co whenevel]| V(s) ||# oo forn > N.

The reason that Bernstein’s polynomials are a desired tool is revealed in the following
theorem.

Theorem 8. If f € CAI[O, 1]is such thatM (n, +o00) <n+landM(n, —oc0) <n+1
forn > N, N afixed integerthen
(i) The sequence

B (s)

AA(f,l’l,S) = l_—Bz(s), I’l21 (52&)

is N unboundedly compatible witf(s) and

- 2f(j/n) ; -
B,(s) = Cls/(1—s)". (5.2b)
j;) 1+1+4f2(j/n) ’

(i) Furthermore,A(f,n,s) converge uniformly o0, 1] to f(s) asn — oo, in the
parabolic metric.
(iii) On every closed subsetc [0, 1], such thatf (s) € C(I) we have

Bu(s) | _
1— B2(s)|

lim sup

n—=>00 gej

f(s)— (5.3)

Notice that the results are easily transferabldao »] by means of the linear transfor-
mationy = ;=% that convertga, b] into[0, 1].

Proof. We observe that
l=[s+A-9"=) Cls/@—s)" (5.4)
j=0
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and that
2f(s)
—1{— 1. 55
14+ V1+4f2(s) 69
Hence,
—1<By(s) =Y 20U engiq — gy-i <1, (5.6)

1+ V14523

Obviously,A( f, n, s) = +oo iff B,(s) = 1 or iff

- 21 (j/n) ; i
1-— Cl's/(1—-)"" =0. 5.7
Z|: " —1+4f2(j/n)i| st (1—s) (5.7)

j=0
Each term in the sum given on the left-hand side of Eq. (5.7) is non-negative. Hence (5.7)
can be materialized iff foreach j =0,1,2,...,n, we have
2f(j : :
1- fG/m) Cls/(L—s)"T =0, (5.8)
1+/1+452(j/n)

There are three cases to be considered. The case & 1, the case = 0 and the case
s =1.1f0 <s < 1thenCs/(1—s)"/ #0forall j =0,1,2,....,n,n =1,2,... .
This requires for fixeah

2f(j/n)

=1 ,j=01212...,n, n=12,... (5.9)
1+ V1+4f2(j/n)
or
f<1)=+oo, j=0,12 . .n (5.10)
n
Hence (5.10) require@ + 1) equidistant points where (5.10) is satisfied.
L. . . o 2£(0) 1 _ —
Th|.s isimpossible it > N.Ifs = 0,then—l+\/m 1iff £(0) = +o0. Similarly,
lﬂj% = 1iff (1) = +o00. The arguments are similar for the caseo. [J

It goes without saying that if (s) possesses a finite numhberof discontinuities then
A(f, n, s) is N unboundedly compatible witf(s). Notice that Theorem 8 allowg(s) to
possess infinitely many points of discontinuity that are not equally spaced. For example
consider the functiory (s) = s~1cs@ % Evidently, f(s) € CAI[O, 1] with points of
discontinuity ats = 0 andn—ll, m a positive integer. We claim that(f, n,s) is N = 2
unboundedly compatible witfi(s). Assume by contradiction that this is false. Thegs-
mij =4andj=0,1,2,...,n—1,n, andm; some positive integers. This, for each fixed
integern in an infinite sequence of valuesofThis is so iff for fixedn we haven = jm;,
andj =0,1,...,n—1, nthat implies thahis divisible by(n — 1). This is impossible for
n > 2 and the conclusion follows.
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Let us proceed with an informal discussion of the approximations of periodic functions
f(s) = f(s +2n) and f € CAI[—m=, ]. To this end we construct the coefficients
1 f” 2f(s) cosns
a, = — _—
! a1+ /14 472(s)
1 (™ 2f(s)sinns
by, = — / — ds, (5.12)
! x4 1+ 4f2(s)

in order to obtain the partial sums

(5.11)

n
Fos) = %0 + lax cosks + by sinksl, n=0,12.... (5.13)
k=1

We generate the Cesaro sums

oos) = L2 g5 = PO FAG + () (5.14)
1 n+1
Evidently,g, (s) are “trigonometric sums” of degree n =0, 1,2, ... . Namely,a,, (s)

are polynomials of degre®in the two variables cos and sins. By Fejer’s theorem,

T _2fm
n<>=/ Ks. 1, 5.15a
nts —n s 1+,/1+4f2(;7 ( )

with K (s, 7, n) the positive Kernel that satisfies

1 sin(n+1)(i1—S) 2
K(s,ﬂ,n)zzn(n+1)|: e } . (5.15b)

.g[7]. Con ntiyp < —2L8) < A7 impliesm < <M.
See e.g| ].Co sequentlyy Vi p es.m. oy (s) |
Moreover, ifM —m > 0 andM andmare the absolute minimum and absolute maximum

values of—2L8)__ on(—oo0, 00), respectively, them M for — )
14+4/14+452(s) (=00, 00) p Y. < op(s) < o0 < s <00

To prove the above statement we notice that- m > 0 implies that there exists a point
o € [—n, m] such that

2
S (o) (5.16)
I \/1+4f2(170

By continuity we have theff™ [M — 1+\/2$ K(s,n,n)dy > 0 or that

o,(s) = /n K(s,n,n)————— 21 dn <M i K(s, n,n)ydn= M. (5.17)
—n 1+ 14+ 4f2(n)
. B S 1 2H©

Inasimilar mannerwe have < g, (s) for—oco < s < 0o. Since 1 1+m

<1,then-1 < o0,(s) <1, n=0,1,2,...fors € (—o0, 00) if f(s) is not the constant
00 Or —o0
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We can summarize formally the above discussion in the following theorem:

Theorem 9. Let f(s) € CAI[—mn, n] and f (s + 2%) = f(s). Then,
(i) there exists quotients dfrigonometric sums’% that converge uniformly tg (s)
on (—oo, 00), asn — oo, in the parabolic metric.

(i) On every subset C (—o0, 00), that excludes points whetg (s)| = oo we have

uniformly
. an(s)
lim su - = 5.18
n—oo P f(S) 1-— 65(3‘) ( )
(iiiy Moreover, 1— ¢2(s) > 0,forn =1,2,..., —o0 < s < oo.
The approximation of vector functions = V(s) = (v1(s), v2(s), ..., vy (s)), vk (s) €
CAlla,bl,k =1,2,...,m, may be done in two ways. In the first way, each component

vk (s) could be apprOX|mated by a rational functl?ﬁ% with By, (s) the Bernstein

polynomials utilized in Theorem 8. This involves the "simultaneous evaluation dif-
ferent denominators ana different square roots in the expressmnsm k =

1+,/ 1+4”kn (s)

1,2,...,m.ltis possible to obviate the necessity to calculatesthdifferent denominators
andmdifferent square roots by utilizing the parabolic compactificatioR'ofor the vector
functionV (s). Thus, making our computation more efficient. Moreover, the approximations
could be made unboundedly compatible witls). This is given in the next proposition.

Proposition 10. LetV(s) € CAI[O, 1]. LetK (n, 00) < n + 1forn > N. Then,
(i) the vectorW = W(V, n, s) defined by

1
= ——————(B1,(s), B2,(s5), ..., Bun(s)), A
W(V,n,s) 1_221:119]@!@)( 1n(8), B2y (s) (s)) (5.19)
with
Bin(s) =Y _ i < )C”s/(l s)', (5.20a)
j=0
De(s) = 2ui(s) L k=12....m, (5.20b)

1+ \/1+ 450 _ovl(s)

is N unboundedly compatible with(s).

(i) The vector approximan®’ (V, n, s) converge tdV (s) uniformly on[0, 1] asn — oo,
in the parabolic metric.

(iif) On every closed subsétc [0, 1], such thatV (s) is continuous we have

lim sup||V(s) — W(V,n,s)|| =0. (5.21)

n—o00 sel
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Proof. We will prove only (i) of the proposition as the proof of the other parts is obvious. We
will show that} ;" ; B,fn (s) = lisimpossible if= > N. To this end define two quantities
J1 andJa, such that

2

m ) B m n A J L . B
Y BL(s) =) Z Ok <;> Cisl(@=9)" | =nh+ (5.22)
k=1 k=1| j=0
where
=Yy Z 02 (%) [C"sT (1 —s)" T2
k=1 j=0
=Sl A s RS 82 <i> (5.23)
=0 =1 "
and

’” (. ()2 o . .
JZ:ZZ Z i <;> Dk <;> Ch ClhsTsl2(1—s)" (1 —5)" 2. (5.24)

k=1 j1#j2

The second sumin (5.24) istaken over all indigeasnd j», such thafji, j» =0,1,...,n,
and j; # jo. It is readily observed that after the change of order of summatioh ine
obtain

m N N
i g _ N 1\ A 2
J2=2) ChCLshs(1L— )L -5y Y iy <f;> o <%> (5.25)

J1#J2 k=1

By virtue of the Cauchy—Schwarz inequality we have

He@a@ B [Ee@)] - e

Consequently,

n m . % m . %
112l < D IC)s/ (L —5)" TP [Zv,ﬁ(%)} [Zﬁf(i—z)} . (5.27)
j=0

k=1 k=1

NI

We now make a few observations. We havg'_ ; ﬁ,f(s) <1 and equality holds i} ;" ;
v,f(s) = o0, for some valuesin [0, 1]. Consequently, by (5.23) and (5.27) we have

m n
S B ()= s+ < Y [CsT (L~ 5y 2
k=1 j=0
+2 ) ChC s (L—s)" (L - 5)
J1#J2
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- J1 iro J2
~2 A2
| X (2)] iR (2)
k=1 k=1

2

dYocrsia—-s"| =1 (5.28)
j=0

Moreover, the equality_j_, BZ,(s) = 1= [1—s +s1¥, holds if Y, 92(1) = 1, or

if > g v,f(,%) =oo,forall j =0,1,2,...,n. Thisis impossible iz > N and the result
follows. [

Remark 11. The compactification presented here employs a bijection th&t¥sfunction.
There are simpler compactifications Ii%%, that could achieve similar results. The main
difficulty in working with compactifications lik +ZHZ|| is that they are not smooth enough.

The mapping belongs © but not toC¥, k > 1, whemn = 1, and is not smooth for > 1.
This could become a serious theoretical and practical handicap. Notice also thstaif
polynomial thenﬁHZ|| could be eitheg - or 7. Namely, two different polynomials may
be involved.

Remark 12. Monotone approximation operators, that include the Bernstein operator as a
particular case, could lead to other interesting unboundedly compatible approximations.
Other positive kernels, that include the kernel in (5.17) as a particular case, could achieve
similar goals.
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